$\qquad$

1. An Allen bolt needs to be tightened to a torque of 60 Ncm . A technician tightens the bolt by pushing on the end of an Allen key with a force of 5 N . How long was the Allen key?
2. Two children balance a see-saw. The child on the left weighs 550 N and sits 2 m from the pivot. The child on the right sits 2.5 m from the pivot. How much does the second child weigh?
3. In Q2, the child on the left moves so that she is 3 m from the pivot. How far must the child on the right be from the pivot so that the see-saw still balances?
4. In Q3, the child on the right gets off and another child weighing 350 N gets on in the same place. Where must the child on the left move to so that the see-saw still balances?
5. A girl weighing 400 N sits on the left of a see-saw 2.2 m from the pivot.

A boy weighing 380 N sits on the left 0.5 m from the pivot.
A boy weighing 440 N sits on the right 2.4 m from the pivot.
Calculate the total CW moment and the total ACW moment, and say what will happen to the see-saw.
6. In Q5, where must the boy on the right move to so that the see-saw is balanced?
7. A see-saw that is 4 m long is perfectly balanced on a pivot in the middle. A helium balloon is then attached to the right hand side of the see-saw, and pulls upwards with a force of 0.2 N . Draw a diagram showing the force from the balloon, and say what will happen:
8. A boy tries to balance the see-saw by putting a 0.2 N weight on the left hand end of the see-saw. Draw a diagram and label the forces from the balloon and the weight. Explain whether this balances the see-saw or not.

